In mathematics, the greatest common divisor (gcd), also known as the greatest common denominator, greatest common factor (gcf), or highest common factor (hcf), of two or more non-zero integers, is the largest positive integer that divides the numbers without a remainder. For example, the GCD of 8 and 12 is 4.
This notion can be extended to polynomials, see greatest common divisor of two polynomials.
Contents |
The greatest common divisor is useful for reducing fractions to be in lowest terms. For example, gcd(42, 56) = 14, therefore,
The greatest common divisor of a and b is written as gcd(a, b), or sometimes simply as (a, b). For example, gcd(12, 18) = 6, gcd(−4, 14) = 2. Two numbers are called coprime or relatively prime if their greatest common divisor equals 1. For example, 9 and 28 are relatively prime.
Greatest common divisors can in principle be computed by determining the prime factorizations of the two numbers and comparing factors, as in the following example: to compute gcd(18, 84), we find the prime factorizations 18 = 2 · 32 and 84 = 22 · 3 · 7 and notice that the "overlap" of the two expressions is 2 · 3; so gcd(18, 84) = 6. In practice, this method is only feasible for small numbers; computing prime factorizations in general takes far too long.
Here is another concrete example, illustrated by a Venn diagram. Suppose it is desired to find the greatest common divisor of 48 and 180. First, find the prime factorizations of the two numbers:
What they share in common is two "2"s and a "3":
A much more efficient method is the Euclidean algorithm, which uses the division algorithm in combination with the observation that the gcd of two numbers also divides their difference: divide 84 by 18 to get a quotient of 4 and a remainder of 12. Then divide 18 by 12 to get a quotient of 1 and a remainder of 6. Then divide 12 by 6 to get a remainder of 0, which means that 6 is the gcd. Formally, it can be described as:
Which also could be written as
The series of quotients generated by the Euclidean algorithm composes a continued fraction.
If a and b are not both zero, the greatest common divisor of a and b can be computed by using least common multiple (lcm) of a and b:
Keith Slavin has shown that for odd a ≥ 1:
which is a function that can be evaluated for complex b [1] and Wolfgang Schramm has shown that
is an entire function in the variable b for all positive integers a where cd(k) is Ramanujan's sum.[2] Marcelo Polezzi has shown that:
for positive integers a and b.[3] Donald Knuth proved the following reduction:
for non-negative integers a and b, where a and b are not both zero.[4]
In 1972, J. E. Nymann showed that the probability that k independently chosen integers are coprime is 1/ζ(k).[5] (See coprime for a derivation.) This result was extended in 1987 to show that the probability that k random integers has greatest common divisor d is d-k/ζ(k).[6]
Using this information, the expected value of the greatest common divisor function can be seen (informally) to not exist when k = 2. In this case the probability that the gcd equals d is d−2/ζ(2), and since ζ(2) = π2/6 we have
This last summation is the harmonic series, which diverges. However, when k ≥ 3, the expected value is well-defined, and by the above argument, it is
For k = 3, this is approximately equal to 1.3684. For k = 4, it is approximately 1.1106.
The greatest common divisor can more generally be defined for elements of an arbitrary commutative ring.
If R is a commutative ring, and a and b are in R, then an element d of R is called a common divisor of a and b if it divides both a and b (that is, if there are elements x and y in R such that d·x = a and d·y = b). If d is a common divisor of a and b, and every common divisor of a and b divides d, then d is called a greatest common divisor of a and b.
Note that with this definition, two elements a and b may very well have several greatest common divisors, or none at all. But if R is an integral domain then any two gcd's of a and b must be associate elements. Also, if R is a unique factorization domain, then any two elements have a gcd. If R is a Euclidean domain then a form of the Euclidean algorithm can be used to compute greatest common divisors.
The following is an example of an integral domain with two elements that do not have a gcd:
The elements 2 and 1 + √(−3) are two "maximal common divisors" (i.e. any common divisor which is a multiple of 2 is associated to 2, the same holds for 1 + √(−3)), but they are not associated, so there is no greatest common divisor of a and b.
Corresponding to the Bezout property we may, in any commutative ring, consider the collection of elements of the form pa + qb, where p and q range over the ring. This is the ideal generated by a and b, and is denoted simply (a, b). In a ring all of whose ideals are principal (a principal ideal domain or PID), this ideal will be identical with the set of multiples of some ring element d; then this d is a greatest common divisor of a and b. But the ideal (a, b) can be useful even when there is no greatest common divisor of a and b. (Indeed, Ernst Kummer used this ideal as a replacement for a gcd in his treatment of Fermat's Last Theorem, although he envisioned it as the set of multiples of some hypothetical, or ideal, ring element d, whence the ring-theoretic term.)